Mitochondrial regulation of caspase activation by cytochrome oxidase and tetramethylphenylenediamine via cytosolic cytochrome c redox state.

نویسندگان

  • Vilmante Borutaite
  • Guy C Brown
چکیده

Cytochrome c release from mitochondria induces caspase activation in cytosols; however, it is unclear whether the redox state of cytosolic cytochrome c can regulate caspase activation. By using cytosol isolated from mammalian cells, we find that oxidation of cytochrome c by added cytochrome oxidase stimulates caspase activation, whereas reduction of cytochrome c by added tetramethylphenylenediamine (TMPD) or yeast lactate dehydrogenase/cytochrome c reductase blocks caspase activation. Scrape-loading of cells with this reductase inhibited caspase activation induced by staurosporine. Similarly, incubating intact cells with ascorbate plus TMPD to reduce intracellular cytochrome c strongly inhibited staurosporine-induced cell death, apoptosis, and caspase activation but not cytochrome c release, indicating that cytochrome c redox state can regulate caspase activation. In homogenates from healthy cells cytochrome c was rapidly reduced, whereas in homogenates from apoptotic cells added cytochrome c was rapidly oxidized by some endogenous process. This oxidation was prevented if mitochondria were removed from the homogenate or if cytochrome oxidase was inhibited by azide. This suggests that permeabilization of the outer mitochondrial membrane during apoptosis functions not just to release cytochrome c but also to maintain it oxidized via cytochrome oxidase, thus maximizing caspase activation. However, this activation can be blocked by adding TMPD, which may have some therapeutic potential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial regulation of caspase activation by cytochrome oxidase and tetramethylphenylenediamine (TMPD) via cytosolic cytochrome c redox state

Cytochrome c release from mitochondria induces caspase activation in cytosols, however, it is unclear whether the redox state of cytosolic cytochrome c can regulate caspase activation. Using cytosol isolated from mammalian cells we find that oxidation of cytochrome c by added cytochrome oxidase stimulates caspase activation whereas reduction of cytochrome c by added TMPD (tetramethylphenylenedi...

متن کامل

Importance of the redox state of cytochrome c during caspase activation in cytosolic extracts.

The export of cytochrome c from mitochondria to the cytoplasm has been detected during apoptosis. Addition of cytochrome c to cytosolic extracts can activate the caspases, suggesting that this export could be an important intracellular signal for initiating the apoptotic programme. We have investigated the mechanism of caspase activation by cytochrome c. Mitochondrial cytochrome c normally shut...

متن کامل

Protective Role of Apigenin Against Aβ 25-35 Toxicity Via Inhibition of Mitochondrial Cytochrome c Release

Introduction: Cognitive dysfunction is the most common problem of patients with Alzheimer disease (AD). The pathological mechanism of cognitive impairment in AD may contribute to neuronal loss, synaptic dysfunction, and alteration in neurotransmitters receptors. Mitochondrial synapses dysfunction due to the accumulation of amyloid beta (Aβ) is one of the earliest pathological features of AD. Th...

متن کامل

Minocycline blocks c-terminal fragments of amyloid precursor protein-induced neurotoxicity by inhibition of cytochrome c release and caspase-12 activation

Minocycline is a second-generation tetracycline that effectively crosses the blood-brain barrier. It has remarkable neuroprotective qualities in models of cerebral ischaemia, traumatic brain injury, Huntington’s and Parkinson’s diseases. However, there is no evidence about neuroprotective effects of minocycline on AD. Alzheimer’s disease (AD) is a neurodegenerative disorder characterized neurop...

متن کامل

Nitric oxide regulation of mitochondrial oxygen consumption II: Molecular mechanism and tissue physiology.

Nitric oxide (NO) is an intercellular signaling molecule; among its many and varied roles are the control of blood flow and blood pressure via activation of the heme enzyme, soluble guanylate cyclase. A growing body of evidence suggests that an additional target for NO is the mitochondrial oxygen-consuming heme/copper enzyme, cytochrome c oxidase. This review describes the molecular mechanism o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 43  شماره 

صفحات  -

تاریخ انتشار 2007